Energy storage in front of mountains
Whitepaper

LFP in energy storage

Lithium-ion batteries play an essential role in the transition to renewable energies and in generating electricity from more reliable and sustainable technologies. NMC has been the widely used technology for the past years, but now LFP is increasing in popularity due to reasons such as cost and safety advantages. However, LFP comes with challenges, particularly regarding accurate state estimations.

from TWAICE
No items found.
Download the content

twaicetech

TWAICE helped me to learn more about: LFP in energy storage read article here:

www.twaice.com/whitepaper/lfp-in-energy-storage

#thinktwaice

Overcoming challenges in State of Charge estimations for LFP energy storage systems

Introduction

Lithium-ion batteries are an integral part of the transition to renewable energy, both for the automotive sector’s transition to green mobility, and for the transition to generating electricity from more reliable and sustainable technologies. As renewable energy sources such as solar and wind are intermittent and therefore unreliable power sources, energy must be stored for certain periods of time. Technologies are required to stabilize the grid by ensuring that energy is released into the grid or removed from the grid when necessary.

Two major lithium-ion technologies are currently used in the field of stationary energy storages: NMC (Nickel Manganese Cobalt) and LFP (Lithium Iron Phosphate). NMC is currently the most mature existing technology, and it is therefore widely used, especially in the automotive industry. However, LFP is becoming more and more popular in energy storage, which brings unique challenges, particularly regarding state estimations such as State of Charge.

In the whitepaper, we address the following questions:

  • Why is state of charge (SoC) estimation important for energy storage?
  • What are the characteristics of NMC and LFP cells?
  • How can battery analytics estimate SoC for LFP cells?
Download the full whitepaper:
SURVEY

Share Your Insights in the BESS Industry

We are researching the challenges of managing and operating BESS.
Take part and receive early access to the report & battery-themed socks!​

Take part

Related Resources

Electrified street in mountains
WHITEPAPER

Batteries and their Global Warming Potential: a lifecycle view

Lithium-Ion-Batteries are a key technology for green energy, mobility, and for this reason a key technology to mitigate climate change. However, batteries have a significant environmental impact. This impact is created along various steps in the lifecycle, e.g. during the extraction of raw materials or production. This white paper will explore the various stages of a battery's life cycle and how they contribute to its overall Global Warming Potential (GWP).
electric bus charging in city
WHITEPAPER

E-bus charging strategies

What kind of e-bus charging strategies exist and what is their impact on battery health and aging? This whitepaper provides these answers and shows how battery analytics can help operators make data-driven, informed decisions regarding the best charging strategies for their e-bus fleets.
Wind turbines over forest electricity
WHITEPAPER

Energy Storage Analytics

Battery storage systems are an essential component of the energy sector. However, they are complex systems that require special attention. The primary goal of storage owners is to maximize the profit possible from the storage system without taking on additional risk. This is where battery analytics comes into play.