Knowledge HUB
Insights from battery experts
Explore the latest trends, research papers, blog posts and more. Join us as we cover hot topics, debate the future of tech and share trending stories.
Insights
Article
・
May 31, 2023
How energy storage systems are used
As related costs decrease and deployment options increase, more and more, energy storage systems (ESS) are becoming essential for sustainable energy production. The ability to store energy as well as supply it makes the technology suitable for multiple use cases. Understanding all the possible use cases for ESS makes that attractiveness even clearer.
Article
・
March 27, 2023
In-life mobility solutions
Most fleet managers in the public sector, and operators of larger commercial fleets are now opting for electric vehicles. Nevertheless, there are still some concerns about this new technology regarding battery failure costs. This is when battery analytics becomes a key-value driver to unleash the full potential of battery-powered fleets.
Article
・
March 27, 2023
De-risk deployment & operations of energy storage systems
On average battery energy storage systems are only available 82% of the time. Many issues however can already be detected before deployment, in the commissioning phase. The article explains the advantages of digital commissioning, like a quicker analysis and more detailed insights into KPIs and potential manufacturing failures.
Article
・
December 23, 2022
Battery industry 2023: More sustainability, safety and independence
Battery industry predictions for 2023 by Dr. Matthias Simolka, Product Manager Energy Solutions at TWAICE.
Article
・
November 9, 2022
Improve battery system design with battery simulation models
Batteries are a key technology in the transition to carbon-free mobility. When it comes to designing battery systems for electric products, batteries must meet certain requirements that must still be met after years of operation, in order to avoid jeopardizing the intended business case and damaging companies. TWAICE's simulation models help engineers make the right decisions fast when designing a battery system, leading to reduced risks, improved reliability, and faster time to market.
Article
・
October 11, 2022
De-risk your BESS projects by keeping track of warranty conditions
What are performance warranties and why are they important in the design, operation and bankability of battery energy storage systems projects? This article answers these questions and shows how our TWAICE Warranty Tracker can minimize risks and ensure a successful business case.
Whitepaper
・
August 9, 2024
Beyond Lithium: Explore the potential of sodium-ion batteries with TWAICE’s new battery simulation model
As the demand for energy storage continues to surge, researchers and engineers are turning their attention to sodium-ion batteries as a promising alternative to lithium-ion. In this whitepaper, we explore the growing demand for sodium-ion technology and explain how TWAICE’s sodium-ion battery simulation model can help engineers gain initial insights into this new technology.
Whitepaper
・
August 6, 2024
Battery Analytics for ESS: Template Text for RFPs, RFIs & other contractual instruments
Battery analytics adoption in energy storage systems (ESS) is rapidly increasing. In this document, we provide ready-to-use text that can be assimilated into requests for proposals (RFPs), requests for information (RFIs), and other contracting instruments to reduce or eliminate any friction of battery analytics implementation.
Whitepaper
・
March 25, 2024
LFP in energy storage
Lithium-ion batteries play an essential role in the transition to renewable energies and in generating electricity from more reliable and sustainable technologies. NMC has been the widely used technology for the past years, but now LFP is increasing in popularity due to reasons such as cost and safety advantages. However, LFP comes with challenges, particularly regarding accurate state estimations.
Whitepaper
・
March 25, 2024
Batteries and their Global Warming Potential: a lifecycle view
Lithium-Ion-Batteries are a key technology for green energy, mobility, and for this reason a key technology to mitigate climate change. However, batteries have a significant environmental impact. This impact is created along various steps in the lifecycle, e.g. during the extraction of raw materials or production. This white paper will explore the various stages of a battery's life cycle and how they contribute to its overall Global Warming Potential (GWP).
Whitepaper
・
March 11, 2024
Battery Energy Storage System Safety: How to Avoid the Worst Case Scenario
The lithium-ion battery market is growing fast, meaning safety incidents are likely to get more and more frequent. Battery analytics helps companies reduce the risk of battery energy storage system fires.
Whitepaper
・
January 9, 2024
Improve the safety, availability and performance of your battery energy storage systems
Battery energy storage systems are essential for accelerating the shift towards green energy and an integral part of the electricity grid across the globe. Their safety, availability and performance is more important than ever.
Research Paper
・
February 14, 2023
Evaluation of transmission losses of various battery electric vehicles
Transmission losses in battery electric vehicles have compared to internal combustion engine powertrains a larger share in the total energy consumption and play therefore a major role. In this paper, three simulation models of the Institute of Automotive Engineering are presented.
Research Paper
・
July 13, 2022
Modeling capacity fade of li-ion batteries
Aging models are fundamental tools to optimize the application of lithium-ion batteries. In this work, we show that the CAP-method models capacity fade more accurately when applied to dynamic cyclic aging tests with periodically changing mean state-of-charge, depth-of-discharge, ambient temperature and discharge rates for a commercial NCA cell with a silicon-doped graphite anode.
Research Paper
・
December 2, 2021
Combining EIS and time-domain data
This work proposes a method to combine time-domain and frequency-domain measurement data for parameterization of RC elements by exploiting the full potential of the distribution of relaxation times (DRT).
Research Paper
・
September 2, 2021
Quantifiability of Cell-to-Cell Variations
Motivated by the question of why impedance variation is consistently reported to be higher than the variation of other parameters, we show that measuring inherent parameter variations caused by production tolerances is superimposed by effects of an imperfect measurement setup.
Research Paper
・
November 23, 2020
Impedance Research Paper
Continuous impedance monitoring provides significant insights into the aging status of a battery. However, the on-line determination of battery impedance parameter for its low-frequency part is a challenging task. This paper provides an algorithm for its determination, which features a novel approach to quantifying the impedance caused by diffusion processes at low frequencies.