impedance of lithium-ion batteries research paper
Research Papers

Impedance Research Paper

Continuous impedance monitoring provides significant insights into the aging status of a battery. However, the on-line determination of battery impedance parameter for its low-frequency part is a challenging task. This paper provides an algorithm for its determination, which features a novel approach to quantifying the impedance caused by diffusion processes at low frequencies.

from TWAICE
Download the content

twaicetech

TWAICE helped me to learn more about: Impedance Research Paper read article here:

www.twaice.com/research/impedance-research-paper

#thinktwaice

Novel method for the on-line estimation of low-frequency impedance of lithium-ion batteries

Highlights

- Impedance estimation with separate algorithm for high- and low-frequency processes.

- Theoretical background to observable frequencies of impedance in real cycling data.

- Algorithm is based on identification windows, and operates non-recursively.

- Voltage error for commercial 18650 NCA cell below 10mV during the validation cycle.

Abstract

Impedance is an important characteristic of lithium-ion batteries since it directly influences their power capability. However, battery impedance is highly dependent on the operating condition and increases over the lifetime of the battery, due to degradation of the latter. Continuous tracking of the impedance can hence provide meaningful insights into the aging status of a battery. However, the on-line determination of battery impedance parameters, especially for its low-frequency part, is a challenging task, which has not yet been solved unambiguously in literature.

This work provides an algorithm for the on-line determination of battery impedance, which features a novel approach to quantifying the impedance caused by diffusion processes at low frequencies.

The algorithm works by parameterizing an equivalent circuit model comprised of RC elements, which reproduces the Li-ion kinetics. The on-line functionality is enabled by parameterizing the model during parameter identification windows of battery operating data, which allow for the separation of high-frequency and low-frequency dynamics. The developed algorithm is designed in such a way that it can in future be embedded into a low-cost microcontroller by taking into account the relevant computational and memory limitations. During experimental validation with a commercial Li-ion battery, the root-mean-square error of the simulated voltage during diverse static and dynamic loads is reduced by over 50% compared to a benchmark algorithm without the proposed approach.

Access the paper here.

SURVEY

Share Your Insights in the BESS Industry

We are researching the challenges of managing and operating BESS.
Take part and receive early access to the report & battery-themed socks!​

Take part

Related Resources

Lithium-ion battery cells degradation
RESEARCH PAPER

Modeling Particle Versus SEI Cracking in Lithium-Ion Battery Degradation

This work identifies and systematically compares three different SEI interaction theories, and applies them to experimental degradation data from a commercial lithium-ion cell. It shows that SEI delamination without any cracking of the active particles, and SEI microcracking, where cycling only affects SEI growth during the cycle itself, are both unlikely candidates.
Battery production and testing
RESEARCH PAPER

Non-destructive electrode potential and open-circuit voltage aging estimation for lithium-ion batteries

In this publication we extend a state-of-the-art electrode open circuit potential model for blend electrodes and inhomogeneous lithiation. We introduce a bi-level optimization algorithm to estimate the open parameters of the electrode model using measurements conducted on the full-cell level with state-of-the-art testing equipment.
Battery development
RESEARCH PAPER

Mechanistic cycle aging model for the open-circuit voltage curve of lithium-ion batteries

Cycling lithium-ion batteries causes capacity fade, but also changes the shape of the open-circuit voltage (OCV) curve, due to loss of active material (LAM) and loss of lithium inventory (LLI). To model this change, we recently proposed a novel empirical calendar aging model that is parameterized on component states of health (s) instead of capacity fade only.
No items found.