Battery research and software
Research Papers

Measurement Approaches for Thermal Impedance Spectroscopy of Li-ion Batteries

Battery performance, lifetime and safety are highly dependent on temperature. With the recent high demand for power capabilities, heat management has become increasingly relevant.

TWAICE / Apr 12, 2023

twaicetech

TWAICE helped me to learn more about: Measurement Approaches for Thermal Impedance Spectroscopy of Li-ion Batteries read article here:

www.twaice.com/research/measurement-approaches-for-thermal-impedance-spectroscopy-of-li-ion-batteries

#thinktwaice

Two novel measurement methods for capturing the thermal behaviour of Li-ion cells in the frequency domain

Authors: Cedric Kirst, Juan Ramos Zayas, Jan Singer

Highlights

  • Two new measurement approaches for Thermal Impedance Spectroscopy of Li-ion cells
  • Reduction of the state of the art thermal measurement time by 62%
  • Thermal models show a MAE below 0.3 K on a validation measurement in the time domain

This work introduces two novel measurement methods for capturing the thermal behaviour of Li-ion cells in the frequency domain. For the validation, we compare them to the state of the art measurement method, in which the battery is thermally stimulated by a set of discrete frequencies, each tested individually in a sequential manner.

All experiments are conducted with a cylindrical 18650 LFP-Graphite cell and lead to similar thermal impedance spectra. We validate a 0-D thermal model fitted to the respective measurement results with a thermal step response in the time domain. The results show, that all three models accurately represent the thermal behaviour of a Li-ion cell, with a mean absolute error below 0.3 K on the validation test. A spider-web diagram classifies and compares the given methods based on five values showing, that the state of art thermal measurement time can be reduced by 62% while also increasing the impedance measurement resolution by measuring multiple frequencies simultaneously.

Access the paper here.

Related Resources

Battery material
Research

Non-destructive electrode potential and open-circuit voltage aging estimation for lithium-ion batteries

In this publication we extend a state-of-the-art electrode open circuit potential model for blend electrodes and inhomogeneous lithiation. We introduce a bi-level optimization algorithm to estimate the open parameters of the electrode model using measurements conducted on the full-cell level with state-of-the-art testing equipment.
Battery development
Research

Mechanistic cycle aging model for the open-circuit voltage curve of lithium-ion batteries

Cycling lithium-ion batteries causes capacity fade, but also changes the shape of the open-circuit voltage (OCV) curve, due to loss of active material (LAM) and loss of lithium inventory (LLI). To model this change, we recently proposed a novel empirical calendar aging model that is parameterized on component states of health (s) instead of capacity fade only.
Battery material
Research

Mechanistic calendar aging model for lithium-ion batteries

In this work we present a novel mechanistic calendar aging model for a commercial lithium-ion cell with NCA cathode and silicon-graphite anode. The mechanistic calendar aging model is a semi-empirical aging model that is parameterized on component states of health, instead of capacity.