Knowledge HUB

Insights from battery experts

Explore the latest trends, research papers, blog posts and more. Join us as we cover hot topics, debate the future of tech and share trending stories.

Insights

Solar panels in front of an energy storage systems

How energy storage systems are used

As related costs decrease and deployment options increase, more and more, energy storage systems (ESS) are becoming essential for sustainable energy production. The ability to store energy as well as supply it makes the technology suitable for multiple use cases. Understanding all the possible use cases for ESS makes that attractiveness even clearer.
Electric fleet management

In-life mobility solutions

Most fleet managers in the public sector, and operators of larger commercial fleets are now opting for electric vehicles. Nevertheless, there are still some concerns about this new technology regarding battery failure costs. This is when battery analytics becomes a key-value driver to unleash the full potential of battery-powered fleets.
Energy Storage Systems

De-risk deployment & operations of energy storage systems

On average battery energy storage systems are only available 82% of the time. Many issues however can already be detected before deployment, in the commissioning phase. The article explains the advantages of digital commissioning, like a quicker analysis and more detailed insights into KPIs and potential manufacturing failures.
Green Tech Battery

Battery industry 2023: More sustainability, safety and independence

Battery industry predictions for 2023 by Dr. Matthias Simolka, Product Manager Energy Solutions at TWAICE.
TWAICE Model Library

Improve battery system design with battery simulation models

Batteries are a key technology in the transition to carbon-free mobility. When it comes to designing battery systems for electric products, batteries must meet certain requirements that must still be met after years of operation, in order to avoid jeopardizing the intended business case and damaging companies. TWAICE's simulation models help engineers make the right decisions fast when designing a battery system, leading to reduced risks, improved reliability, and faster time to market.
wind energy storage on fields

De-risk your BESS projects by keeping track of warranty conditions

What are performance warranties and why are they important in the design, operation and bankability of battery energy storage systems projects? This article answers these questions and shows how our TWAICE Warranty Tracker can minimize risks and ensure a successful business case.

Beyond Lithium: Explore the potential of sodium-ion batteries with TWAICE’s new battery simulation model

As the demand for energy storage continues to surge, researchers and engineers are turning their attention to sodium-ion batteries as a promising alternative to lithium-ion. In this whitepaper, we explore the growing demand for sodium-ion technology and explain how TWAICE’s sodium-ion battery simulation model can help engineers gain initial insights into this new technology.
Battery Analytics for Energy Storage Systems

Battery Analytics for ESS: Template Text for RFPs, RFIs & other contractual instruments

Battery analytics adoption in energy storage systems (ESS) is rapidly increasing. In this document, we provide ready-to-use text that can be assimilated into requests for proposals (RFPs), requests for information (RFIs), and other contracting instruments to reduce or eliminate any friction of battery analytics implementation.
Energy storage in front of mountains

LFP in energy storage

Lithium-ion batteries play an essential role in the transition to renewable energies and in generating electricity from more reliable and sustainable technologies. NMC has been the widely used technology for the past years, but now LFP is increasing in popularity due to reasons such as cost and safety advantages. However, LFP comes with challenges, particularly regarding accurate state estimations.
Electrified street in mountains

Batteries and their Global Warming Potential: a lifecycle view

Lithium-Ion-Batteries are a key technology for green energy, mobility, and for this reason a key technology to mitigate climate change. However, batteries have a significant environmental impact. This impact is created along various steps in the lifecycle, e.g. during the extraction of raw materials or production. This white paper will explore the various stages of a battery's life cycle and how they contribute to its overall Global Warming Potential (GWP).
energy storage system safety solar panels dusk

Battery Energy Storage System Safety: How to Avoid the Worst Case Scenario

The lithium-ion battery market is growing fast, meaning safety incidents are likely to get more and more frequent. Battery analytics helps companies reduce the risk of battery energy storage system fires.
Improving BESS performance, availability and safety

Improve the safety, availability and performance of your battery energy storage systems

Battery energy storage systems are essential for accelerating the shift towards green energy and an integral part of the electricity grid across the globe. Their safety, availability and performance is more important than ever.
BESS failure analysis

Insights from EPRI's BESS failure incident database

This report is intended to address the failure mode analysis gap by developing a classification system that is practical for both technical and non-technical stakeholders.
Battery production and testing

Non-destructive electrode potential and open-circuit voltage aging estimation for lithium-ion batteries

In this publication we extend a state-of-the-art electrode open circuit potential model for blend electrodes and inhomogeneous lithiation. We introduce a bi-level optimization algorithm to estimate the open parameters of the electrode model using measurements conducted on the full-cell level with state-of-the-art testing equipment.
Battery development

Mechanistic cycle aging model for the open-circuit voltage curve of lithium-ion batteries

Cycling lithium-ion batteries causes capacity fade, but also changes the shape of the open-circuit voltage (OCV) curve, due to loss of active material (LAM) and loss of lithium inventory (LLI). To model this change, we recently proposed a novel empirical calendar aging model that is parameterized on component states of health (s) instead of capacity fade only.
Holding battery component in front of people

Mechanistic calendar aging model for lithium-ion batteries

In this work we present a novel mechanistic calendar aging model for a commercial lithium-ion cell with NCA cathode and silicon-graphite anode. The mechanistic calendar aging model is a semi-empirical aging model that is parameterized on component states of health, instead of capacity.
TWAICE battery research in front of computer

Measurement Approaches for Thermal Impedance Spectroscopy of Li-ion Batteries

Battery performance, lifetime and safety are highly dependent on temperature. With the recent high demand for power capabilities, heat management has become increasingly relevant.
TWAICE battery electric vehicle

Evaluation of transmission losses of various battery electric vehicles

Transmission losses in battery electric vehicles have compared to internal combustion engine powertrains a larger share in the total energy consumption and play therefore a major role. In this paper, three simulation models of the Institute of Automotive Engineering are presented.