cell testing in the TWAICE battery research center
Research Papers

Modeling capacity fade of li-ion batteries

Aging models are fundamental tools to optimize the application of lithium-ion batteries. In this work, we show that the CAP-method models capacity fade more accurately when applied to dynamic cyclic aging tests with periodically changing mean state-of-charge, depth-of-discharge, ambient temperature and discharge rates for a commercial NCA cell with a silicon-doped graphite anode.

TWAICE / Jul 13, 2022
No items found.

twaicetech

TWAICE helped me to learn more about: Modeling capacity fade of li-ion batteries read article here:

www.twaice.com/research/modeling-capacity-fade-of-li-ion-batteries

#thinktwaice

Modeling capacity fade of lithium-ion batteries during dynamic cycling considering path dependence

Alexander Karger, Leo Wildfeuer, Deniz Aygül, Arpit Maheshwari, Jan P. Singer, Andreas Jossen.

Highlights

- Two methods for modeling capacity fade during dynamic operation are compared.

- Current capacity instead of charge-throughput as reference point is more accurate.

- Experimental validation with commercial NCA cell with silicon-doped graphite anode.

- Non-commutative capacity fade revealed as insufficient sign of path dependence.

Abstract

Aging models are important tools to optimize the application of lithium-ion batteries. Usually, aging models are parameterized at constant storage or cycling conditions, whereas during application, storage and cycling conditions can change. In the literature, two different methods for modeling capacity fade during such dynamic operation are proposed. These methods use either the cumulated charge-throughput (CCT-method) or the current capacity (CAP-method) as reference points, when aging conditions are changing.

In this work, we show that the CAP-method models capacity fade more accurately when applied to dynamic cyclic aging tests with periodically changing mean state-of-charge, depth-of-discharge, ambient temperature and discharge rates for a commercial NCA cell with a silicon-doped graphite anode. However, in cases where the difference between actual and reference charge-throughput of the CAP-method becomes large, the capacity gradient is modeled more accurately with the CCT-method. Because the relative capacity fade error of the CAP-method is small at it with 6%, we assume that capacity fade behaves path-independently for the dynamic cyclic aging tests since the CAP-method assumes path independence through history independence.

Moreover, because the measured capacity fade is non-commutative, which is sometimes labeled path-dependent, we recommend to not consider non-commutative capacity fade as a definitive sign of path-dependent degradation.

Access the paper here.

Related Resources

Battery material
Research

Mechanistic calendar aging model for lithium-ion batteries

In this work we present a novel mechanistic calendar aging model for a commercial lithium-ion cell with NCA cathode and silicon-graphite anode. The mechanistic calendar aging model is a semi-empirical aging model that is parameterized on component states of health, instead of capacity.
Battery research and software
Research

Measurement Approaches for Thermal Impedance Spectroscopy of Li-ion Batteries

Battery performance, lifetime and safety are highly dependent on temperature. With the recent high demand for power capabilities, heat management has become increasingly relevant.
TWAICE battery electric vehicle
Research

Evaluation of transmission losses of various battery electric vehicles

Transmission losses in battery electric vehicles have compared to internal combustion engine powertrains a larger share in the total energy consumption and play therefore a major role. In this paper, three simulation models of the Institute of Automotive Engineering are presented.